
Efficient Backward Non Deterministic Matching
(EBNDM) Algorithm

Sonam Jain
Dept. of Computer Science

Lakshmi Narain College of Technology & Science,
Bhopal, India.

Vivek Kumar
Dept. of Computer Science

Lakshmi Narain College of Technology & Science,
Bhopal, India.

Abstract -Bit parallel string matching algorithms are the
latest and the efficient class of algorithm for string matching.
It uses the intrinsic parallelism inside a computer word is
known as bit parallelism. BNDM is the most popular bit
parallel string matching algorithm. This algorithm can
directly use for various real world problem like as Detection
of Intrusion in the network, Data extraction and mine,
avoiding Plagiarism, use of Bioinformatics in various medical
field. BNDM algorithm having their standard implementation
where lots of bit wise operations are checking as not in bit
parallel mode like as MSB of bit vector is one or not or the
value of the bit vector is zero or non-zero. All these operations
are the comparison based operation which are quite time
consuming. If these operations are optimized or simplified in
bit parallelism based operations than they have their best bit
parallelism based implementation.

In this paper we are found out such operations and simplified
in pure bit parallel based implementation. Here we simplified
the popular algorithm BNDM and named as Efficient
Backward Non Deterministic Matching (EBNDM) Algorithm.
The working of Efficient Backward Non Deterministic
Matching (EBNDM) Algorithm is same as classical one but
due to use of bit wise operation in place of comparison
operator our algorithm gives better result. Experimental
results show that our EBNDM algorithm is better than the
standard implementation.

Keywords-String Matching, Bit Parallelism, BNDM, TNDM,
BNDMq, Efficient BNDM.

[1] INTRODUCTION
String Matching Algorithms [1] are used in various real
world applications whether it is used directly or indirectly.
So improve in the performance of these string matching
algorithms the efficiency of these real world application
like as Intrusion Detection System [2, 3], Data Mining [4,
5], Digital Forensics [6, 7], Plagiarism Detection [8, 9], Bio
Informative [10] Video Retrieval[11] is also improved.
Before nineties there are various character based algorithms
that set their benchmarks in string matching and used like
as Boyer Moore [12], BMH [13], Rabin Karp [14], Wu
Manber[15] and Aho-Corasik[16]. By using the character
based algorithms the efficiency of these algorithm can be
improved up to certain level so improve in efficiency of
sting matching algorithm Bit parallel string matching
algorithm [17] are used which uses the intrinsic parallelism
of the computer. There are various bit parallel string
matching algorithms are used like as BNDM [18], TNDM
[19], BNDMq[20], Shift OR [21], Shift OR with q gram
[22]. Here, we present an Efficient BNDM. In our Efficient
BNDM algorithm we try to improve the loop of algorithm

as well as use as much as bitwise operations like checking
the bit vector is zero or not and the value of MSB is one or
zero. These operations in classical algorithm are carried out
with the help of comparison operators here, we use bitwise
operator instead of comparison operators. Our experiments
have shown that Efficient BNDM algorithm is much faster
than compared to original one for the large text data.

[2] IMPROVEMENT PARAMETER
2.1. Character Mismatch
Character mismatch means pattern is not found at that
position. It is important to identify to shift the window. In
character based algorithms it can be checked directly but in
case of bit parallel algorithms, it is checked by the value of
bit vector. It means if value of bit vector D become zero.
This is checked by simply comparison operator which is
time consuming. So, instead of comparison operator we can
use bit wise operator which can improve the performance.

2.2. Pattern Found
Similar to pattern mismatch pattern match is important
which is clearly identifiable in character based algorithm
while in bit parallel it is identified by the checking the
MSB of the bit vector. In the case of BNDM algorithm and
other bit parallel algorithm pattern are found when MSB is
one. This checking of MSB is carried out by the
comparison operator but in efficient BNDM algorithm we
use the bit wise operator to get better results.

2.3. Iteration Minimization
In most of the bit wise algorithm like BNDM, TNDM,
BNDMq we create loops to find the patterns in the text.
These loops take lot of time to execute because it runs
many times according to the condition until it is false. By
doing some statement changes or conditions there is a
possibility of getting efficient results. Because in the
BNDM algorithm the value of D is left shift and compared
with the limit to MSB check after the value of D become
zero means no possibility to find the pattern. In the efficient
BNDM algorithm these extra work is cut out from the
algorithm.

[3] EFFICIENT BNDM ALGORITHM
BNDM [18] is an efficient bit parallel algorithm but there is
possibility of improvement to get better results. In the
Efficient BNDM algorithm for searching a pattern of length
m, the inner loop of this new algorithm runs for pattern
length m to 0 in search of the complete pattern in reverse

Sonam Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5194-5197

www.ijcsit.com 5194

order, instead of running on D as in classical BNDM [18].
This loop will terminate when either a mismatch occurs or
a prefix is identified by value of D becomes zero but, in
case of classical one after getting the value zero it will also
check the MSB value as well as left shift the value by one.
In case if this loop completes its all iterations i.e. runs m
number of times, then it reports an occurrence of pattern.
With these changes some more changes are also carried out
like in place of mismatch condition instead of using
comparison operator we use simple bit wise NOT operator
and in the case of pattern found use an bit wise AND
operator which are faster than classical one. Comparison
among both algorithms is shown in Table 1.

Table 1: Change Parameter of BNDM Algorithm

Efficient BNDM algorithm after applying the basic
parameter changes are shown below. Where p is the pattern
of length m and T is the text of length n

EFFICIENT BNDM ALGORITHM

EFFICIENT BNDM (p:p1p2.pm ,T:t1t2..tn)
1. Pos 0
Pre-processing
2. For c ∈ ∑ do B[]0m
3. for i = 1 to m
4. do B[pm-i+1] B[pm-i+1] | 0m-i 1 0i-1
Searching
5. while pos<= n-m do
6. D = 1m
7. last m, j m
8. while j > 0 do
9. D D&B[Tpos+j]
10. if (!D)goto Outer loop
11. end if
12. j--;
13. if (D & 10m-1)
14. last j
15. end if
16. D D<< 1
17. end while
18. report occurrence at pos+1
19. Outer loop:
20. pospos + last
21. end while

[4] TIME AND SPACE COMPLEXITY
Time complexity of the algorithm can be calculated by
these different scenarios. Let ‘T’ be the text of length n and
‘P’ is the pattern of length m so we have to find P in T. Let
us assume that m ≤ w holds, then the preprocessing time
complexity is O(m+|Σ|),where |Σ| is number of distinct
characters existing in pattern. The worst case when all the
text as well as pattern are made of single character(when
T=an p=am) time complexity of Efficient BNDM is same
as that of original one i.e. O(mn). In an average case
scenario, the inner loop of this Efficient BNDM algorithm
has a frequency lesser than the frequency count of classical
BNDM. Thus, on an average case this Efficient BNDM
performs far better than classical BNDM. The best case
(when T=an P=am-1b) time complexity of this Efficient
BNDM is O(n/m) which is same as BNDM. However, our
algorithm benefit by reducing the number of comparison’s
up to 30% in best case. Efficient BNDM need occurrence
vectors B for each character which is same as classical
BNDM. So we can say that the space complexity is
unchanged in efficient BNDM algorithm.

[5] EXPERIMENTAL RESULTS
This section gives the brief introduction to the experimental
results and analysis. In this a long text and patterns of
different length are taken and running time of algorithms
improved algorithms have been calculated and on the basis
of these results a table of comparison is formed as well as
graphs which clearly represents that the Efficient BNDM
algorithm has got considerable speedup as compared to
classical BNDM and other variant of bit parallel as well as
character based algorithm.

4.1 Experimental Environment
All the algorithms are tested on the system having
following configuration:

Processor: 2.1 GHz Intel I3 CPU, 2.10 Ghz; RAM: 3 GB;
L1 Cache: 128 KB; L2 Cache: 512 kB ; L3 Cache: 3 MB
;System Type: 32 Bit Operating System OS: windows 7

Implementations are done using Visual studio 2010
platform and developed in Visual C++.

4.2 Experiment Data
All the implementations are tested on text file of size 210
MB having large number of occurrences of pattern and five
different Patterns of length 4, 8, 12, 16 and 32 bit. In the
text file are taken from bible [23] and patterns are randomly
taken from bible itself.

4.4 Efficient BNDM Algorithm
Efficient BNDM algorithm is compared with classical
BNDM algorithm for different pattern sizes as shown in
Table 2. And comparison of execution time of Improved
BNDM algorithm with classical BNDM is shown in Figure
1.

Sonam Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5194-5197

www.ijcsit.com 5195

Table 2: Comparison between BNDM & Efficient BNDM

These table and figure are clearly shows that the our
algorithm is better than the classical one and take lesser
time as compare to existing one.

Figure 1: Comparative Analysis of BNDM and Efficient
BNDM

Table 3 shows the comparison among the efficient BNDM
algorithm to the other bit parallel algorithm on the 210 MB
data and we get the improved results which is shown in the
figure 2 with the help of graph chart.

Table 3: Comparison between various bit parallel and
EBNDM algorithm

Figure 2: Comparison among various bit parallel algorithm
to EBNDM

Table 4 shows the comparison among various character
based algorithm and Efficient BNDM algorithm and data
obtained is clearly shows that the our algorithm is far better
than the character based algorithm which is also shown in
figure 3 with the help of line graph.

Table 4: Comparison between character based and
EBNDM algorithm

Figure 3: Comparison among various character based
algorithm to EBNDM

Sonam Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5194-5197

www.ijcsit.com 5196

[6] CONCLUSION
we have proposed and developed Efficient Backward Non
Deterministic Matching (EBNDM) Algorithm to improve
the efficiency of the Backward Non Deterministic
Matching (BNDM) Algorithm. In this thesis we are found
out such operations which can be improved like as
comparison operator takes time so these operators
improved in pure bit parallel based implementation. Here
we improved the popular algorithm BNDM. The working
of improved version of this algorithm is same as classical
one but due to use of bit wise operation in place of
comparison operator our algorithm gives better result.
Experimental results and analysis shows that our simplified
implementation is the better than the standard
implementation.

[7] FUTURE WORK
We have performed detailed study on several bit parallel
string matching algorithms. Bit parallel string matching
algorithms are the faster algorithms among all string
matching algorithms. Mostly bit parallel algorithms are
single pattern matching algorithms so it can be
implemented in multiple pattern matching algorithms. We
can also effectively remove the limitation of word size
present in the most of the bit parallel algorithms. These
algorithms use bit wise operation so it can be easily
implemented in the hardware. For further improvement on
GPGPUs memory optimization can be done.

REFERENCES
[1]. Christian Charras and Thierry Lecroq,” Handbook of Exact String

Matching Algorithms”, Published in King’s college publication, Feb
2004.

[2]. Hyunjin Kim, Hong-Sik Kim and Sungho Kang,” A Memory-
Efficient Bit-Split Parallel String Matching Using Pattern Dividing
for Intrusion Detection Systems” IEEE Transactions on Parallel and
Distributed Systems, Volume:22 , Issue: 11, pp. 1904-1911, Nov
2011.

[3]. Pei-fei Wu and Hai-juanShen,”The Research and Amelioration of
Pattern-matching Algorithm in Intrusion Detection System”, In the
proc. of IEEE 14th International Conference on High Performance
Computing and Communication & IEEE 9th International Conference
on Embedded Software and Systems (HPCC-ICESS), pp. 1712-1715,
25-27 June 2012.

[4]. Sanchez D., Martin-Bautista M.J., Blanco I. and Torre C.,” Text
Knowledge Mining: An Alternative to Text Data Mining”, In the
proc. of IEEE International Conference on Data Mining Workshops,
ICDMW '08, pp. 664-672, 15-19Dec. 2008.

[5]. Qiong Zhang, Roger D. Chamberlain, Ronald S. Indeck, Benjamin M.
West and Jason White,” Massively Parallel Data Mining Using

Reconfigurable Hardware: Approximate String Matching”, In
Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), 2004.

[6]. Jooyoung Lee, Sungkyung Un, and Dowon Hong,” Improving
Performance in Digital Forensics”, In the Proc. of International
Conference on Availability, Reliability and Security, 2009.

[7]. Nicole Lang Beebe, Jan Guynes Clark, “Digital forensic text string
searching: Improving information retrieval effectiveness by
thematically clustering search results”, digital investigation 4S S49 –
S54, 2007

[8]. Ramazan S. Aygün “structural-to-syntactic matching similar
documents”, Journal Knowledge and Information Systems, ACM
Digital Library, Volume 16 Issue 3, pages 303-329, Aug 2008

[9]. Alzahrani, S.M, Saudi Arabia, Salim, N and Abraham, A,”
Understanding Plagiarism Linguistic Patterns, Textual Features, and
Detection Methods” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, Volume:42 , Issue: 2,
March 2012.

[10]. Lok-Lam Cheng, David W. Cheung and Siu-Ming Yiu,” Approximate
String Matching in DNA Sequences”, In Proceedings of the Eighth
International Conference on Database Systems for Advanced
Applications (DASFAA’03), 2003.

[11]. JunWei Hsieh, Shang-Li Yu and Yung-Sheng Chen.” Trajectory-
based Video Retrieval by String Matching”, In the Proc. of
International Conference on Image Processing (UP), 2004.

[12]. BOYER, R. S. AND MOORE, J. S,”A fast string searching
algorithm”, Communication of ACM 20, Vol. 10, pp. 762–772, 1977.

[13]. HORSPOOL, R. N,”Practical fast searching in strings”, In proc. Of
Software Practical Exp, Vol. 10, 6, pp. 501–506, 1980.

[14]. Richard M Karp and Michael O Rabin, “Efficient randomized pattern-
matching algorithms”, IBM Journal of Research and Development,
vol. 31(2), pp. 249-260, March 1987.

[15]. Wu S. and U.Manber, “A Fast Algorithm for Multi-Pattern
Searching,” Technical Report TR-94-17 Department of Computer
Science, University of Arizona, Tucson, AZ, May 1994.

[16]. Alfred v. aho and margaret j. corasick,”efficient string matching: an
aid to bibliographic search” communication of acm, vol. 18, june
1975.

[17]. Faro S. and Lecroq T,”The exact online string matching problem: A
review of the most recent results”, ACM Comput. Survey, Article 13,
42 pages, February 2013.

[18]. G. Navarro,M. Raffinot, “Fast and flexible string matching by
combining bit-parallelism and suffix automata”,ACM Journal.
Experimental Algorithmics 2000.

[19]. HannuPeltola and JormaTarhio, Alternative Algorithms for Bit-
Parallel String Matching, String Processing and Information
Retrieval, Spire 2003Springer, LNCS 2857,pp. 80-93, 2003.

[20]. Branislav Durian, Jan Holub, Hannu Peltola and Jarma
Tarhio,”Tuning BNDM with q-grams”, In the proc. Of workshop on
algorithm engineering and experiments, SIAM USA, pp. 29-37, 2009

[21]. R. Baeza-Yates and G. Gonnet,“A new approach to text searching“,
Communication of ACM, Vol. 35(10), pp. 74–82, 1992.

[22]. L. Salmela, J. Tarhio, and J. Kytojoki, “Multi pattern string matching
with q-grams”, Journal of Experimental Algorithms, Volume 11, pp.
1-19, 2006.

[23]. www.holybooks.com/download-bible.

Sonam Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5194-5197

www.ijcsit.com 5197

	[1] Introduction
	[2] Improvement Parameter
	2.1. Character Mismatch
	2.2. Pattern Found
	2.3. Iteration Minimization
	[3] EFFICIENT BNDM ALGORITHM
	[4] Time And Space Complexity
	[5] Experimental Results
	4.1 Experimental Environment
	4.2 Experiment Data
	4.4 Efficient BNDM Algorithm
	[6] Conclusion
	[7] Future Work
	References

